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Abstract. The tunnelling lifetime of an electron lying in a p-type orbital localised at a given distance from
a semiconductor or a metal is calculated by using Bardeen’s method. It is then shown that even in the
absence of broad bands, the hole injection process from semiconductors and metals into polymers should
follow a Fowler-Nordheim dependence, provided that the current is not bulk-limited. In the semiconductor
case, the current can be expressed by a fully analytical formula, and by an approximate one in the case of
a metal. It is demonstrated that the effective Fowler-Nordheim barrier is not the mere difference between
the metal work function or the semiconductor electron affinity and the HOMO level of the polymer, but a
simple function of both levels.

PACS. 82.35.Cd Conducting polymers

1 Introduction

Organic light-emitting diodes represent a growing research
field [1]. This is due to a number of potential advan-
tages, either in terms of mechanical properties or fabri-
cation costs [1]. It is therefore important to clarify some
of the physical mechanisms that govern the electrical be-
haviour of such devices. In particular, there are still some
controversies concerning the injection mechanism which
takes place between a metallic electrode and the poly-
mer under investigation. At moderate field Schottky-type
emission can describe well the current-voltage character-
istics [1], and at higher fields some authors have found
that their devices exhibit a Fowler-Nordheim (FN) tun-
nelling functional form (see, e.g., [2–5]). However, it has
been argued by others that FN tunnelling cannot describe
contact injection into polymers, because these materials
do not own broad energy bands, due to their short conju-
gation lengths [6]. Tunnelling from the highest occupied
molecular orbital (HOMO) or into the lowest unoccupied
molecular orbital (LUMO) should thus differ from what is
expected in the case of broad band materials. There is in-
deed a fundamental difference between the conventional,
one-dimensional Fowler-Nordheim model and the one ex-
posed below: in our case the treatment must be three-
dimensional, and tunnelling occurs between a localised
state and a continuum, not between extended states. Here
I would like to mention that a FN dependence is not spe-
cific to broad bands, and is for instance found in calcu-
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lating the field-assisted, tunnelling escape of an electron
from a delta potential [7,8]. Therefore, a first purpose of
this letter is to calculate in the simplest way which electric
field dependence can be expected in the case of the tun-
nelling from a localised orbital into a continuum formed
by a neighbouring semiconductor or a metal. Then a sec-
ond one is to show that even with localised p-type orbitals,
one should still expect the injection current to be of the
Fowler-Nordheim type. It is demonstrated in this article
that a FN dependence is to be expected at high field, pro-
vided, of course, that the current is injection-limited, and
not bulk-limited.

2 Theory

2.1 Tunnelling into a non-degenerate semiconductor

The system under consideration is an atom-like potential
located at a distance x0 of a semiconductor, the electron
affinity of which is Φ. The binding energy of the p-state
under consideration is −E0. To simplify the calculations I
use a constant effective mass m throughout and consider a
p-type orbital the symmetry axis of which is directed along
the z-axis. To calculate the tunnelling lifetime, I use a po-
tential energy diagram as shown in Figure 1. Two wave
functions are introduced, ψL and ψR, which characterise
respectively an electron in the conduction band of the
semiconductor and in the p-state. ψL and ψR are derived
using the two different potential profiles VL and VR shown
in Figure 1. The complete Hamiltonian of the problem is
H = HL + HR + ~2/2m∇2. Close to the molecule atom,
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Fig. 1. Cross section of the energy diagram of the semicon-
ductor/polymer system, perpendicular to the semiconductor
plane.

the Hamiltonian H is close to HR = −~/2m∇2 + VR, and
far from it, it is close to HL = −~/2m∇2 + VL. Bardeen
has shown that the matrix element for the tunnel transi-
tion can then be written TRL = 〈ψR|H − EL|ψL〉, where
EL is an energy eigenvalue of HL [9]. With our choice
of potentials this reduces to TRL = 〈ψR|VL|ψL〉, and in-
deed corresponds to the method originally proposed by
Oppenheimer [10]. Inside the semiconductor, the wave
function ψL reduces to a plane wave. Outside of it, along
the x-axis the potential is linear and equal to qF (x− x0)
with our choice of origin, where F is the electric field.
A standard solution of Schrödinger equation comes under
the form of an Airy function [11,12]. The evanescent part
of ψL is easily shown to be equal to

ψL =
1

L3/2

√
2k2
x

k2
xAi

2(c) + b2Ai′2(c)

×Ai(bx+ c) exp(i(kyy + kzz)) (1)

where Ai(x) and Ai′(x) are the standard Airy function
and its derivative, respectively. L3 is the volume of the
semiconductor. b and c are given by

b =
(

2mqF
~2

)1/3

(2)

and
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(
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. (3)

kx, ky and kz are linked through
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2m
(
k2
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z

)
= Φ+ qFx0 −E0

= E =
~2k2

2m
· (4)

The normalisation factor in (1) is found by equating
the values of the wavefunction forms corresponding to neg-

ative and positive x values at x = 0, as well as their deriva-
tives. I approximate the p-state by a Gaussian orbital of
the form

ψR =
(

128a5

π3

)1/4

ze−ar
2

(5)

where r = ((x − x0)2 + y2 + z2)1/2 is the distance from
the atom, the coordinates of which are x = x0, y = 0
and z = 0. This approximation presents two advantages.
On the one hand, I can separate the integration vari-
ables when calculating the tunnel matrix element TRL =
〈ψR|VL|ψL〉. On the other hand, the result can then be
used for many molecules or atoms, whose Gaussian orbital
parameters are used and referenced in quantum chemistry.
Although the case detailed here is restricted to a p-type
orbital parallel to the semiconductor plane, a quite similar
calculation could be achieved for a p-type orbital perpen-
dicular to the semiconductor interface, using exactly the
same calculation procedure. A more complete derivation
will be given elsewhere as a function of the angle.

For x > 0, the contribution to the matrix element re-
duces to the simple form 〈ψR|qF (x−x0)|ψL〉x>0. Separat-
ing the variables, and apart from a simple proportionality
factor, the integral with respect to x is equal to

I(F, x0, kx) =
∫ ∞

0

Ai(bx+ c)(x− x0)

× exp
(
−a (x− x0)2

)
dx. (6)

To calculate I, one can remark that the electron affin-
ity of the semiconductor is larger than E0, so that the
contribution to the overlap integral is mostly that of the
x > 0 domain. Thus the total integral value is not ap-
preciably changed by replacing the term in the sum for
x < 0 by the same form as for x > 0. Then, the sum
from minus infinity to plus infinity is calculated by mak-
ing use of three properties of the Airy transforms. ϕα(y) =
(1/α)

∫
f(x)Ai((y − x)/α)dx being the Airy transform of

the function f(x), one has [12]:

f(x+ k)→ ϕα(y + k) (7)
f(kx)→ ϕαk(ky) (8)

xf(x)→ yϕα(y)− α3ϕα′′(y) (9)

and noting that the Airy transform of a Gaussian
exp(−x2) is [12]

exp(−x2)→
√
π

α
exp

[
1
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(
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y
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one eventually gets

I(F, x0, kx) =
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· (11)
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The integrations with respect to y and z are simple
Gaussian integrals and do not lead to any difficulty. One
finally obtains the following expression for TRL:

TRL =
π5/429/4qFkzkx

a3/4L3/2

√
k2
xAi

2(c) + b2Ai′2(c)

× exp

(
k2
‖

4a

)
I(F, x0, kx), (12)

where I(F, x0, kx) is given by (11) and k2
‖ = k2

y + k2
z . Ow-

ing to the magnitude of the various physical quantities
involved in (11) and (12), it is somewhat tedious, but not
difficult to show that equation (12) can be very closely
approached by a simpler analytical formula. Considering
the argument inside the Airy functions in (11) and (12), it
can first be shown that b4/16a2 is negligible in front of c.
Neglecting k2

x in front of 2mΦ/~2, the ratio between the
latter and the former terms is equal to mq2/8~2Φa2F 2.
a−1/2 is typically of the order of one angström, and Φ
lies between 4 and 5 eV. Hence, even for electric fields in
the range of a few MV/cm, the ratio b4/16a2c remains in
the range 10−5. Then, remembering that the asymptotic
expression of Ai′(x)/Ai(x) is x1/2, one can also show by
quite similar considerations that in (11) and (12), one can
keep only the derivatives of the Airy function and skip the
Airy functions themselves. One then obtains

TRL
∼= π7/425/4qFkxkz
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)
· (13)

I note that this formula could also be applied in semicon-
ductor device physics to study field-assisted de-trapping
from an insulator into a metal or a semiconductor, in sit-
uations as those described in [13], or, e.g., for calculating
the escape from Si dots into a gate electrode [14]. For a
constant |TRL|2 the Fermi golden rule gives a probability
of transition

p =
2π
~
|TRL|2

dN
dE

(14)

where dN/dE = (L/2π)34πmk/~2 is the density of states
of the semiconductor, taken at E. Now we have to weight
and sum over the various combinations of kx, ky and kz
that lead to a given E value (i.e. on the sphere of radius k).
This leads to the following integral, giving the transition

probability from the p-state to the continuum:
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∫ k
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(15)

which can be integrated with respect to kz to give

P (F, x0) =
8
√
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(16)

c being a function of k2
x = k2 − k2

‖ through equation (3).
(16) can be numerically integrated to give the tunnelling
probability of the electron from the p-state into the semi-
conductor. A similar expression can also be derived in the
same way to get the tunnelling probability from an s-state.
It is worth noticing that one can make a further step by
using the simpler but almost as accurate expression (13),
instead of (12). After some easy calculation, one obtains
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2
√

2π5/2mq2F 2
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Then, an interesting approximation of (17) can be ob-
tained if we neglect the occurrence of k‖ inside the deriva-
tives of the Airy functions, which is a justified procedure
as long as the kinetic energy E of the electron released in
the band is low in front of the electron affinity. As we shall
see it below, this approximation is particularly suited and
useful for calculating the overall current. In such a scheme
the integral is easy to compute, and I obtain a fully ana-
lytical expression of the reciprocal tunnelling lifetime:

P (F, x0) =
25π5/2m7/2q2F 2

15~8a9/2
(Φ−E0 + qFx0)5/2

×
Ai′2

(
2mE0

b2~2

)
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(
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b2~2

) exp
(
mE0

a~2

)
· (18)

To calculate the tunnelling current I shall make the
assumption that we have a uniform distribution of iden-
tical Gaussian orbitals inside the polymer. Of course, for
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Fig. 2. Variation of the escape probability from an occupied
p-type orbital as a function of the distance from the semicon-
ductor interface. The physical parameters are indicated in the
body of the figure.

a given polymer the summation should indeed be carried
over orbitals with different a values and weighting fac-
tors, depending on the molecule under consideration. But
there is no reason for which the results would then qualita-
tively differ from the simplified model of this paper. With
a density D per unit volume of HOMO orbitals, the total
current density J is immediately given by

J = qD

∫ +∞

x=xC

P (F, x)dx (19)

where the lower integration bound xC is equal to

xC =
E0 − Φ
qF

· (20)

In fact, it is easy to check that P (F, x) is a sharply peaked
function of x, the maximum of which always lies close
to xC (see Fig. 2 for a numerical example). By using ex-
pression (18), we can therefore obtain a very simple and
accurate expression for J , through a rather straightfor-
ward calculation that I summarise as follows: First I use
the usual asymptotic expansion of the derivative of the
Airy function, and then develop the full expression to be
integrated to the first order as a function of (x−xC), both
in front of the exponential term and inside it. It then be-
comes apparent that the integral reduces to the sum of two
Γ functions. The final result is therefore fully analytical,
and J is given by

J =
2−1/4qD
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 (21)

1 2 3
10-13

10-11

1x10-9

1x10-7

1x10-5

1x10-3

1x10-1

1x101

Φ =4.8eV
E

0
=5eV

a-1/2=0.313nm
D=1021cm -3

Numerical
integration

Analytical
model

C
U

R
R

E
N

T
D

E
N

S
IT

Y
(A

/c
m

2
)

ELECTRIC FIELD F (MV/cm)

Fig. 3. Numerical example of the hole tunnelling current
density versus electric field between a semiconductor and a
polymer. The physical parameters are indicated in the fig-
ure body; points: numerical integration of equation (19) using
equation (16) and full line: analytical formula (21).

which can safely be further simplified to

J =
2−1/4qDΓ (7/2)

15π2

√
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qFπ
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√
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× exp
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exp
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 · (22)

Equation (22) is the major result of this paper in the semi-
conductor case. It demonstrates that the hole tunnelling
current from a semiconductor into a polymer should be
of the Fowler-Nordheim type, provided that the current
is contact-limited. The exponential term has an exact
Fowler-Nordheim dependence, and the term in factor of
it has a dependence close to F 9/2. It is thus somewhat
different from the conventional F 2 dependence. But ex-
perimentally it should indeed be very difficult to make a
difference between the two forms, due to the presence of
the prevailing exponential term. In Figure 3, I give a nu-
merical example and it is obvious from it that formula (22)
is indeed a very accurate fit of a full numerical calcula-
tion, using equations (19, 16). A more realistic calculation
would for instance be a sum of terms formally equivalent
to (21), each one corresponding to the different molecu-
lar orbitals and associated weighting factors of the poly-
mer segment under consideration. Besides, equation (21)
demonstrates that the effective Fowler-Nordheim barrier
Φeff is not the mere difference between the electron affin-
ity of the semiconductor and the HOMO level. From (21)
one immediately gets

Φeff =
(
E

3/2
0 − Φ3/2

)2/3

. (23)

A second feature can also be deduced from (22). The FN
pre-factor is not equal to the conventional one, and in-
deed it highly depends on the density of p-type orbitals
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Fig. 4. Cross section of the energy diagram of the
metal/polymer system, perpendicular to the metal plane.

of the polymer. It is therefore not abnormal to find pre-
factors much lower than that expected in the case of broad
bands. This depends not only on the packing density of the
polymer, but also of the HOMO level and the character-
istic spreading of the orbitals. It is worth noticing that a
change in orientation (from parallel to perpendicular) can
lead to an improvement of the current of several orders
of magnitude. Serious attempts to fit experimental data
would therefore require a complete knowledge of the poly-
mer structure, especially close to the interface (molecule
electron wave function and orientation as a function of
depth). Here I would like to stress that I voluntarily chose
the simplest potential form. I did not take into account im-
age force effects or specific polarisation phenomena near
the semiconductor/polymer interface, which are known to
exist. However, I do not expect any of the qualitative con-
clusions of this section to be caught out once an overall
potential shape more complex than a linear one is used
for VL out of the semiconductor. The physical factor which
leads to a FN law is the presence of a potential term linear
in the electric field and the distance, which will remain in
more realistic models.

2.2 Tunnelling into a degenerate semiconductor
or a metal

In the case of a metal, a more appropriate energy diagram
is shown in Figure 4. Basically, we now have to take into
account the Fermi energy EF of the metal, which implies
that the kinetic energy of the electrons released from the
polymer be much higher. Equation (17) is still valid, but
now it is no longer possible to neglect the presence of
k‖ inside the derivatives of the Airy functions appearing
inside the integral. ΦM being the metal work function, in
equation (17) k is now given by

k =
1
~
√

2m (ΦM +EF −E0 + qFx0). (24)

The approximate formulae of Section 2.1 excepted, all
equations and reasoning are still valid in the metal case,
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Fig. 5. Tunnelling hole current between a polymer and a
metal, numerically integrated by using equation (19). The vari-
able is the Fermi energy. The physical parameters are indicated
inside the figure.

provided that one replaces Φ by ΦM + EF but in the ex-
pression of xC, which is now given by xC = (E0−ΦM)/qF .
I did not find an analytical expression for large EF values.
But for small ones in front of E0 and ΦM, it is still possible
to neglect the occurrence of k‖ inside the Airy functions
and then calculations quite similar to that exposed in Sec-
tion 2.1 give

J =
24π5/2q3Dm3

15~7a9/2
√

2
F 2E

5/2
F

ΦM

× exp
(
mE0

a~2

)
exp

−4
√

2m
(
E

3/2
0 − Φ3/2

)
3~qF

 · (25)

The Fermi energy of most metals used in practical sit-
uations will in general not be small in front of E0 and
ΦM , but formula (25) might be used for degenerate semi-
conductors, as, e.g., Indium Tin Oxide (ITO) or degener-
ate Si. It shows that the effective FN barrier still follows
equation (23). For large EF values, I have checked nu-
merically by integrating equation (19) that formula (25)
largely overestimates the current. This is illustrated by
Figure 5. Through numerical calculations, I was led to the
conclusion that it is a reasonable approximation as long
as EF remains below a few 0.1 eV, with E0 and ΦM being
in the range of a few eV. In all my numerical investiga-
tions, I always obtained an effective FN barrier close to
that given by (23), even for large EF values. Besides, it is
interesting to note that the larger is the Fermi energy, the
larger is the FN pre-factor. Everything otherwise fixed,
one can gain several orders of magnitude in comparison
with the semiconductor case, once EF reaches several eV.
To illustrate this point, a numerical comparison is made
in Figure 5, in which I take constant E0 and ΦM values
and vary the Fermi energy. Although the parameters have
been chosen in a somewhat arbitrary way, it is also worth
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noticing that above a few eV, the tunnelling current sat-
urates with EF (in fact it reaches a maximum and then
very slowly decreases). One can therefore conclude that
with a constant work function, it is better to choose the
metal with the highest Fermi energy, so as to maximise
the tunnelling current.

3 Conclusion

In this article I have derived an analytical expression of
the tunnelling transition between a p-type occupied or-
bital and a neighbouring semiconductor or a metal, as
a function of the electric field applied to the considered
molecule. Then I have obtained a fully analytical expres-
sion of the hole tunnelling current between a semiconduc-
tor and a model polymer. It is of the Fowler-Nordheim
type. The model predicts that for hole tunnelling into a
polymer the effective FN energy barrier is not the mere
difference between the HOMO level and the electron affin-
ity of the semiconductor or the metal work function, but
a simple function of them. The formulae derived above
result from a simplified model, but are nevertheless ex-
pected to be helpful in the interpretation of experimental
data, especially in the case of organic electroluminescent
diodes.

I would like to thank J.C. Vial and O. Stéphan (LSP) for useful
comments on the manuscript.
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